skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Sheng-Hung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Global reanalyzes are widely used for investigations of Antarctic climate variability and change. The European Centre for Medium‐Range Weather Forecasts 5th generation reanalysis (ERA5) is well regarded and spans 1940 to today. We investigate whether ERA5 reliably represents the 2‐m air temperature trends across the 1940–2022 (83 years) period at seasonal and annual time scales. We compare ERA5 temperatures with an observation‐based temperature reconstruction for Antarctica (RECON) that has monthly resolution for 1958–2022, the period of reliable observational availability. Results for individual stations are also examined. ERA5 anomalously warms Antarctica in relation RECON especially for the period prior to 1979 when satellite observations over the Southern Ocean were sparse. Trend hotspots that are shown to be artifacts are found at three locations and are present until today. The results demonstrate that ERA5 temperature trends can be questionable even today, but variability is well captured after 1979. 
    more » « less
  2. Abstract Forecasting Antarctic atmospheric, oceanic, and sea ice conditions on subseasonal to seasonal scales remains a major challenge. During both the freezing and melting seasons current operational ensemble forecasting systems show a systematic overestimation of the Antarctic sea-ice edge location. The skill of sea ice cover prediction is closely related to the accuracy of cloud representation in models, as the two are strongly coupled by cloud radiative forcing. In particular, surface downward longwave radiation (DLW) deficits appear to be a common shortcoming in atmospheric models over the Southern Ocean. For example, a recent comparison of ECMWF reanalysis 5th generation (ERA5) global reanalysis with the observations from McMurdo Station revealed a year-round deficit in DLW of approximately 50 Wm−2in marine air masses due to model shortages in supercooled cloud liquid water. A comparison with the surface DLW radiation observations from the Ocean Observatories Initiative mooring in the South Pacific at 54.08° S, 89.67° W, for the time period January 2016–November 2018, confirms approximately 20 Wm−2deficit in DLW in ERA5 well north of the sea-ice edge. Using a regional ocean model, we show that when DLW is artificially increased by 50 Wm−2in the simulation driven by ERA5 atmospheric forcing, the predicted sea ice growth agrees much better with the observations. A wide variety of sensitivity tests show that the anomalously large, predicted sea-ice extent is not due to limitations in the ocean model and that by implication the cause resides with the atmospheric forcing. 
    more » « less
  3. Abstract The West Antarctic climate is under the combined impact of synoptic and regional drivers. Regional factors have contributed to more frequent surface melting with a similar pattern recently, which accelerates ice loss and favors global sea‐level rise. Part I of this research identified and quantified the two leading drivers of Ross Ice Shelf (RIS) melting, viz. foehn effect and direct marine air advection, based on Polar WRF (PWRF) simulations. In this article (Part II), the impact of clouds and the pattern of surface energy balance (SEB) during melting are analyzed, as well as the relationship among these three factors. In general, net shortwave radiation dominates the surface melting with a daily mean value above 100 W·m−2. Foehn clearance and decreasing surface albedo respectively increase the downward shortwave radiation and increase the absorbed shortwave radiation, significantly contributing to surface melting in areas such as western Marie Byrd Land. Also, extensive downward longwave radiation caused by low‐level liquid cloud favors the melting expansion over the middle and coastal RIS. With significant moisture transport occurring over more than 40% of the time during the melting period, the impact from net radiation can be amplified. Moreover, frequent foehn cases can enhance the turbulent mixing on the leeside. With a Froude number (Fr) around 1 or slightly larger, fast downdrafts or reversed wind flows can let the warm foehn air penetrate down to the surface with up to 20 W·m−2in sensible heat flux transfer to the ground. However, when the Froude number is close to infinity with breaking waves on the leeside, the contribution of turbulence to the surface warming is reduced. With better understanding of the regional factors for the surface melting, prediction of the future stability of West Antarctic ice shelves can be improved. 
    more » « less
  4. Abstract West Antarctica (WA), especially the Ross Ice Shelf (RIS), has experienced more frequent surface melting during the austral summer recently. The future is likely to see enhanced surface melting that will jeopardize the stability of ice shelves and cause ice loss. We investigate four major melt cases over the RIS via Polar Weather Research and Forecasting (WRF) simulations (4 km resolution) driven by European Centre for Medium‐Range Weather Forecasts (ECMWF) Reanalysis 5th Generation (ERA5) reanalysis data and Moderate Resolution Imaging Spectroradiometer (MODIS) observed albedo. Direct warm air advection, recurring foehn effect, and cloud/upper warm air introduced radiative warming are the three major regional causes of surface melting over WA. In this paper, Part I, the first two factors are identified and quantified. The second paper, Part II, discusses the impact of clouds and summarizes all three factors from a surface energy balance perspective. With a high‐pressure ridge located westward towards the Sulzberger Ice Shelf (77° S, 148° W) and a low‐pressure center located between 165° and 180° W, warm marine air from the Ross Sea is advected towards the coastal RIS and leads to surface melting. When the high‐pressure ridge is located farther east towards Marie Byrd Land (120–150° W), the foehn effect can cause a 2–4°C increase in surface temperature on the leeside of the mountains. For three of four melt cases, more than 40% of the melting period experiences foehn warming. Isentropic drawdown is usually the dominant foehn mechanism and contributes up to a 14°C temperature increase, especially when strong low‐level blocking occurs on the upwind side. The thermodynamic mechanism can be important depending on the strength of moisture uptake and condensation on the windward side. Meanwhile, sensible heat flux contributes less to foehn warming, but still plays an important role in the melting. The prediction of future stability of the RIS should include foehn warming as a major driver. 
    more » « less